
UNIT-4 

 
SPARK 

 

Introduction to Data Analysis with Spark: What is a Apache Spark, A 
unified Spark, Who uses Spark and for what? A Brief History of Spark, 

Spark version and releases, Storage layers for Spark. 
Programming with RDDs: RDD Basics, Creating RDDs, RDD Operations, 
Passing functions to Spark, Common Transformations and Actions, 

Persistence.  
Spark SQL: Linking with Spark SQL, Using Spark SQL in Applications, 

Loading and Saving Data, JDBC/ODBC Server, User-defined functions, 
Spark SQL Performance.  
 

 
Q) What is Spark? Explain features of Spark. 
 

Apache Spark is an open-source, distributed processing system used for big 
data analytics. It utilizes in-memory caching, and optimized query execution 

for fast analytic queries against data of any size.  
 

It provides development APIs in Java, Scala, Python and R, and supports 

code reuse across multiple nodes—batch processing, interactive queries, 
real-time analytics, machine learning, and graph processing.  

 
Spark was initially started by Matei Zaharia at UC Berkeley's AMPLab in 
2009, and open sourced in 2010. In 2013, the project was donated to the 

Apache Software Foundation and switched its license to Apache 2.0 from 
BSD. In February 2014, Spark became a Top-Level Apache Project.  

 

Spark is used by organizations from any industry, including at FINRA, Yelp, 
Zillow, DataXu, Urban Institute, and CrowdStrike. 

 
Spark uses Hadoop in two ways – one is storage and second is processing. 
Since Spark has its own cluster management computation, it uses Hadoop 

for storage purpose only. 
 
 

Features of Spark: 
 

1. Swift Processing: Apache Spark offers high data processing 
speed. Thatis about 100x faster in memory and 10x faster on the disk. 
However, it is only possible by reducing the number of read-write to 

disk. 
 

2. Dynamic in Nature: Basically, it is possible to develop a 
parallelapplication in Spark. Since there are 80 high-level operators 
available in Apache Spark. 

 

https://en.wikipedia.org/wiki/Matei_Zaharia
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Apache_Software_Foundation#Projects


3. In-Memory Computation in Spark: The increase in processing 

speed ispossible due to in-memory processing. It enhances the 
processing speed. 

 

4. Reusability: We can easily reuse spark code for batch-
processing or joinstream against historical data. Also to run ad-

hoc queries on stream state. 
 

5. Spark Fault Tolerance: Spark offers fault tolerance. It is 

possiblethrough Spark‘s core abstraction-RDD. 
 

6. Real-Time Stream Processing: We can do real-time stream 
processing in Spark. Basically, Hadoop does not support real-time 
processing. 

7. Lazy Evaluation in Spark: All the transformations we make in 
SparkRDD are Lazy in nature that is it does not give the result right 
away rather a new RDD is formed from the existing one. Thus, this 

increases the efficiency of the system. 
 

8. Polyglot: Spark provides high-level APIs in Java, Scala, Python, 
and R.Spark code can be written in any of these four languages. It 
also provides a shell in Scala and Python. 

 
9. Support for Sophisticated Analysis: There are dedicated tools in 

ApacheSpark. Such as for streaming data interactive/declarative 
queries, machine learning which add-on to map and reduce. 

 

10. Integrated with Hadoop: As we know Spark is flexible. It can 
runindependently and also on Hadoop YARN Cluster Manager. Even it 
can read existing Hadoop data. 

 
11. Spark GraphX: In Spark, a component for graph and graph-

parallelcomputation, we have GraphX. 
 

12. Cost Efficient: For Big data problem as in Hadoop, a large amount 

ofstorage and the large data centre is required during replication. 
Hence, Spark programming turns out to be a cost-effective solution. 

 
 

Q) Explain Spark Architecture in-detail. 
 

Apache Spark Architecture is based on two main abstractions- 
 Resilient Distributed Datasets (RDD) 
 Directed Acyclic Graph (DAG) 

 
RDDs are the building blocks of any Spark application. RDDs Stands for: 

 Resilient: Fault tolerant and is capable of rebuilding data on failure 
 Distributed: Distributed data among the multiple nodes in a cluster 
 Dataset: Collection of partitioned data with values 

https://data-flair.training/blogs/apache-spark-in-memory-computing/


Directed Acyclic Graph (DAG) 

Direct - Transformation is an action which transitions data partition state 
from A to B. 
Acyclic -Transformation cannot return to the older partition 

DAG is a sequence of computations performed on data where each node 
is an RDD partition and edge is a transformation on top of data. The 

DAG abstraction helps eliminate the HadoopMapReduce multistage 
execution model and provides performance enhancements over Hadoop. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 

 
Fig: Spark Architecture 

 

Apache Spark follows master/slave architecture with two main daemons 
and a cluster manager – 
 

i. Master Daemon – (Master/Driver Process) 
ii.Worker Daemon –(Slave Process/Executor) 

 
A spark cluster has a single Master and any number of Slaves/Workers. 

 
Spark Driver – Master Node of a Spark Application(Master): 
 

 It is the central point and the entry point of the Spark Shell (Scala, 
Python, and R). 

 The driver program runs the main () function of the application and is 
the place where the Spark Context is created. It is similar to your 

database connection. 

 Spark Driver contains various components –DAGScheduler, 

TaskScheduler, BackendScheduler and BlockManager responsible for 
the translation of spark user code into actual spark jobs executed on 

the cluster. 
 
 



Executor/Worker Node(Slave): 
 

 Executor is a distributed agent responsible for the execution of tasks. 

Every spark applications has its own executor process. 

 Executors usually run for the entire lifetime of a Spark application 

and this phenomenon is known as ―Static Allocation of Executors. 

 However, users can also opt for dynamic allocations of executors 

wherein they can add or remove spark executors dynamically to match 
with the overall workload. 

 

 Executor performs all the data processing. 

 Reads from and Writes data to external sources. 
 Executor stores the computation results data in-memory, cache or on 

hard disk drives. 

 Interacts with the storage systems. 
 

 
Cluster Manager: 
 

An external service responsible for acquiring resources on the spark 
cluster and allocating them to a spark job. 

 
A Spark application can leverage for the allocation and deallocation of 
various physical resources such as memory for client spark jobs, CPU 

memory, etc. 
 

Hadoop YARN, Apache Mesos or the simple standalone spark cluster 

manager either of them can be launched on-premise or in the cloud for a 
spark application to run. 

 
 
Application: 

 

 When a client submits a spark user application code, the driver 

implicitly converts the code containing transformations and actions 
into a logical directed acyclic graph (DAG). 

 At this stage, the driver program also performs certain optimizations 
like pipelining transformations and then it converts the logical DAG 

into physical execution plan with set of stages. 

 After creating the physical execution plan, it creates small physical 

execution units referred to as tasks under each stage. Then tasks are 
bundled to be sent to the Spark Cluster. 

 spark-submit is the single script used to submit a spark program and 

launches the application on the cluster. 
 

Q) Write a brief note on: Spark Unified Stack. 
 

The Spark project contains multiple closely integrated components. At its 
core, Spark is a ―computational engine‖ that is responsible for scheduling, 



distributing, and monitoring applications consisting of many computational 

tasks across many worker machines, or a computing cluster. 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

Fig.The Spark stack 
 

Spark Core 
 

 Spark Core contains the basic functionality of Spark, including 
components for task scheduling, memory management, fault recovery, 

interacting with storage systems, and more. 

 Spark Core is also home to the API that defines resilient distributed 
datasets (RDDs), which are Spark‘s main programming abstraction. 

 Spark Core provides many APIs for building and manipulating these 

collections. 
 
 

Spark SQL 
 

 Spark SQL was added to Spark in version 1.0. 

 Spark SQL is Spark‘s package for working with structured data. It 

allows querying data via SQL as well as the Apache Hive variant of 
SQL—called the Hive Query Language (HQL)—and it supports many 

sources of data, including Hive tables and JSON. 

 Spark SQL allows developers to intermix SQL queries with the 

programmatic data manipulations supported by RDDs in Python, 
Java, and Scala, all within a single application, thus combining SQL 
with complex analytics. 

 
 

Spark Streaming 
 

 Spark Streaming is a Spark component that enables processing of live 

streams of data. 
Eg.logfiles generated by production web servers. 

 Spark Streaming was designed to provide the same degree of fault 

tolerance, throughput, and scalability as Spark Core. 
 



 

MLlib 
 

 Spark comes with a library containing common machine learning (ML) 

functionality, called MLlib. 

 MLlib provides multiple types of machine learning algorithms, 

including classification, regression, clustering, and collaborative 
filtering, as well as supporting functionality such as model evaluation 
and data import. 

 
GraphX 
 

 GraphX is a library for manipulating graphs (e.g., a social network‘s 

friend graph) and performing graph-parallel computations. 

 Like Spark Streaming and Spark SQL, GraphX extends the Spark 

RDD API, allowing us to create a directed graph with arbitrary 
properties attached to each vertex and edge. 

 GraphX also provides various operators for manipulating graphs (e.g., 

subgraph and mapVertices) and a library of common graph algorithms 

(e.g., PageRank and triangle counting). 
 
 

Cluster Managers 
 

 Spark is designed to efficiently scale up from one to many thousands 

of compute nodes. 

 To achieve this while maximizing flexibility, Spark can run over a 

variety of cluster managers, including Hadoop YARN, Apache Mesos, 
and a simplecluster manager included in Spark itself called the 

Standalone Scheduler. 
 
 
Q) Who uses Spark? Explain applications of spark. 
 

Data Scientists and Data Engineers uses Spark. Their main task is to 
analyze and model data. They may have experience with SQL, statistics, 

predictive modeling (machine learning), and programming, usually in 
Python, Matlab, or R. Data scientists also have experience with 
techniques necessary to transform data into formats that can be analyzed 

for insights. 
 

Spark is a general-purpose framework for cluster computing, it is used 
for a diverse range of applications.  



 
Applications of Spark 

 

1. Finance: Banks are using Spark to access and analyse the social 
media profiles, call recordings, complaint logs, emails, forum 
discussions, etc. to gain insights which can help them make right 

business decisions for credit risk assessment, targeted advertising and 
customer segmentation. 

 

2. E-Commerce(Alibaba & ebay): Information about real time transaction 
can be passed to streaming clustering algorithms like alternating least 

squares (collaborative filtering algorithm) or K-means clustering 
algorithm.  

 

The results can be combined with data from other sources like social 
media profiles, product reviews on forums, customer comments, etc. to 

enhance the recommendations to customers based on new trends. 
 

3. Health Care(MyFitnessPal): MyFitnessPal helps people achieve a healthy 

lifestyle through better diet and exercise. MyFitnessPal uses apache 
spark to clean the data entered by users with the end goal of identifying 
high quality food items. 

Media & Entertainment 
 

4. Gaming(Tencent, Riot): 
 
Apache Spark is used in the gaming industry to identify patterns from 

the real-time in-game events and respond to them to harvest lucrative 
business opportunities like targeted advertising, auto adjustment of 
gaming levels based on complexity, player retention and many more. 

 
Spark improves the gaming experience of the users, it also helps in 

processing different game skins, different game characters, in-game 
points, and much more. It helps with performance improvement, offers, 
and efficiency. Riot can now detect the cause which made the game slow 

and laggy, so they can solve problems on time without impacting users.  
 

 
 
 



5. Media:  

 
Yahoo uses Apache Spark for personalizing its news webpages and for 
targeted advertising. It uses machine learning algorithms that run on 

Apache Spark to find out what kind of news - users are interested to 
read and categorizing the news stories to find out what kind of users 

would be interested in reading each category of news. 
 

Netflix uses Apache Spark for real-time stream processing to provide 

online recommendations to its customers. Streaming devices at Netflix 
send events which capture all member activities and play a vital role in 

personalization. It processes 450 billion events per day which flow to 
server side applications and are directed to Apache Kafka. 
 

6. Travel: 
 
TripAdvisor, a leading travel website that helps users plan a perfect trip 

is using Apache Spark to speed up its personalized customer 
recommendations. TripAdvisor uses apache spark to provide advice to 

millions of travellers by comparing hundreds of websites to find the best 
hotel prices for its customers. The time taken to read and process the 
reviews of the hotels in a readable format is done with the help of Apache 

Spark. 
 

OpenTable, an online real time reservation service, with about 31000 
restaurants and 15 million diners a month, uses Spark for training its 
recommendation algorithms and for NLP of the restaurant reviews to 

generate new topic models. 
 
 

Q) Briefly explain about Spark Storage Layers.(OR) Explain how to 
load and save data in spark. 

 
Spark can create distributed datasets from any file stored in the Hadoop 
distributed filesystem (HDFS) or other storage systems supported by the 

Hadoop APIs (including your local filesystem, Amazon S3, Cassandra, 
Hive, HBase, etc).  
 

It‘s important to remember that Spark does not require Hadoop; it simply 
has support for storage systems implementing the Hadoop APIs. Spark 

supports text files, SequenceFiles, Avro, Parquet, and any other Hadoop 
InputFormat. 
 



 
 
Text file: 

scala> val rd1 =  
spark.sparkContext.wholeTextFiles("C:/Users/chpraneeth/Desktop/ 

links.txt") 
scala> rd1.collect() 

     rd1. saveAsTextFile(―Tout‖) 

 
    JSON File: 
scala> val df = spark.read.json("Sample.json") 

scala> df.select("a.b").show() 

 

scala> df.write.json("Jout") 
 

 

CSV file: 
scala> val df = spark.read.csv("pima_diabetes.csv") 
scala> df.select("*").show() 



 
 
scala> df.write.csv("Cout") 

 
Sequence File: 
val data = sc.sequenceFile(inFile, classOf[Text], classOf[IntWritable]). 

map{case (x, y) => (x.toString, y.get())} 
 

val data = sc.parallelize(List(("Panda", 3), ("Kay", 6), ("Snail", 2))) 
data.saveAsSequenceFile(outputFile) 
 

 
Q) What is RDD? Explain the features of RDD. 

 

RDDs are the building blocks of any Spark application. RDDs Stands for: 
 Resilient: Fault tolerant and is capable of rebuilding data on 

failure 
 Distributed: Distributed data among the multiple nodes in a 

cluster 
 Dataset: Collection of partitioned data with values 

 

There are various advantages/features of using RDD. Some of them are 
 

1. In-memory computation: Basically, while storing data in RDD, 
data isstored in memory for as long as you want to store. It 

improves the performance by an order of magnitudes by keeping 
the data in memory. 

 

2. Lazy Evaluation: Spark Lazy Evaluation means the data inside 
RDDs arenot evaluated on the go. Basically, only after an action 
triggers all the changes or the computation is performed. Therefore, 

it limits how much work it has to do. 
 

3. Fault Tolerance: If any worker node fails, by using lineage of 
operations,we can re-compute the lost partition of RDD from the 
original one. Hence, it is possible to recover lost data easily. 

 
4. Immutability: Immutability means once we create an RDD, we can 

notmanipulate it. Moreover, we can create a new RDD by 

performing any transformation. Also, we achieve consistency 
through immutability. 



 

5. Persistence: In in-memory, we can store the frequently used RDD. 
Also,we can retrieve them directly from memory without going to 
disk. It results in the speed of the execution. Moreover, we can 

perform multiple operations on the same data. It is only possible by 
storing the data explicitly in memory by calling persist() or cache() 

function. 
 

6. Partitioning: Basically, RDD partition the records logically. 

Also,distributes the data across various nodes in the cluster. 
Moreover, the logical divisions are only for processing and 

internally it has no division. Hence, it provides parallelism. 
 

7. Parallel: While we talk about parallel processing, RDD processes 

the data parallelly over the cluster. 
 

8. Location-Stickiness: To compute partitions, RDDs are capable 
ofdefining placement preference. Moreover, placement preference 
refers to information about the location of RDD. Although, the 

DAGScheduler places the partitions in such a way that task is 
close to data as much as possible. Moreover, it speeds up 

computation. 
 

9. Coarse-grained Operation: Generally, we apply coarse-

grainedtransformations to Spark RDD. It means the operation 
applies to the whole dataset not on the single element in the data 

set of RDD in Spark. 
 

10. No limitation: There are no limitations to use the number of 

SparkRDD. We can use any no. of RDDs. Basically, the limit 
depends on the size of disk and memory. 

 
 

Q) Define RDD. Explain the workflow of RDD. Explain 
Transformations and Actions on RDD. 

 

RDDs are the building blocks of any Spark application. RDDs Stands for: 
 

 Resilient: Fault tolerant and is capable of rebuilding data on failure 
 Distributed: Distributed data among the multiple nodes in a cluster 
 Dataset: Collection of partitioned data with 

valuesBasically, there are 2 ways to create  

 
 

Spark RDDs: 

1. Parallelized collections 

By invoking parallelize method in the driver program, we can create 
parallelized collections. 

    
 



In python: 
 

nums = sc.parallelize([1, 2, 3, 4]) 
>>>nums.collect() 
[1, 2, 3, 4] 

 
    In scala: 
 

scala>val rd1 = spark.sparkContext.parallelize(Seq(1,3,3)) 
scala> rd1.collect() 
res: Array[Int] = Array(1, 3, 3) 

 

2. External datasets 
One can create Spark RDDs, by calling a textFile method. Hence, this 
method takes URL of the file and reads it as a collection of lines.  

Eg.  lines = sc.textFile("README.txt") 
 
 

 
 
 
 
 

Fig. Workflow of RDD 
 

 
With RDDs, you can perform two types of operations: 

 

1. Transformations: They are the operations that are applied to 
create a newRDD. 

 
2. Actions: They are applied on an RDD to instruct Apache Spark 

to applycomputation and pass the result back to the driver. 
 

To summarize, every Spark program and shell session will work as 

follows: 
1. Create some input RDDs from external data. 
2. Transform them to define new RDDs using 

transformations like filter(). 
3. Ask Spark to persist() any intermediate RDDs that will 

need to be reused. 
4. Launch actions such as count() and first() to kick off a 

parallel computation, which is then optimized and 

executed by Spark. 



 
Actions: 

The most common action on basic RDDs you will likely use is reduce(), 
which takes a function that operates on two elements of the type in your 

RDD and returns a new element of the same type. 
A simple example of such a function is +, which we can use to sum our 
RDD. 
 

Eg. 

reduce() in Python 
>>> sum = nums.reduce(lambda x, y: x + y) 
>>> print sum 

 

10 

 
 

 
 
 

 



 



Q) Explain the difference between map() and flatmap() 
 

The map() transformation takes in a function and applies it to each element 

in the RDD with the result of the function being the new value of each 
element in the resulting RDD. 
 

Eg. 
 

Python squaring the values in an RDD 
 

>>> nums = sc.parallelize([1, 2, 3, 4]) 
>>> squared = nums.map(lambda x: x * x).collect() 

>>> print squared 
 

[1, 4, 9, 16] 

 
 

Fig.Difference between flatMap() and map() on an RDD 
 
 

The flatMap() transformation takes in a function and applies it to each 

element in the RDD and return an RDD of the contents of the iterators 
returned i.e; flatmap returns multiple values for each element in the source 
RDD, Often used to extract words. 

 
 
Eg. 
 

flatMap() in Python, splitting lines into words 
 

>>> lines = sc.parallelize(["hello world", "hi"]) 

>>> words = lines.flatMap(lambda line: line.split("")) 
>>> words.first() 

 
'hello' 
 

 
 

 



Q) Explain about Paired RDD operations. 
 

Paired RDD is a distributed collection of data with the key-value pair. 
 

Transformations on Pair RDDs: 

Since pair RDDs contain tuples, we need to pass functions that operate 
on tuples rather than on individual elements. 
 

Transformations on one pair RDD (example: {(1, 2), (3, 4), (3, 6)}) 



Transformations on two pair RDDs (rdd = {(1, 2), (3, 4), (3, 6)} other = {(3, 9)})  
Eg. 

In Python: 
>>>rdd = sc.parallelize({(1, 2), (3, 4), (3, 6}) 

>>>other = sc.parallelize({(3,9)}) 
>>>print rdd.collect() 
 

[(1,2),(3,4),(3,6)] 
>>>print other.collect() 

[(3,9)] 
 
In Scala: 

scala> val rd1 = spark.sparkContext.parallelize(Seq((1,2),(3,4),(3,6))) 
scala> rd1.collect() 

res: Array[(Int, Int)] = Array((1,2), (3,4), (3,6)) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Actions Available on Pair RDDs 
Actions on pair RDDs (example ({(1, 2), (3, 4), (3, 6)})) 

 

 
 
 

 
 

 



Q) What is spark? State the advantages of using Apache spark over 
Hadoop MapReduce for Big data processing. 

 

Key Features Apache Spark   HadoopMapReduce 
      

Ease of Easy to code   Difficult to code 

Programming     
    

Absraction  Uses RDD abstraction No Abstraction 
    

Speed  10–100 times faster than Slower 

  MapReduce    
     

Analytics  Supports streaming, Comprises  simple  Map  and 

  Machine  Learning, Reduce tasks 

  complex analytics, etc.  
    

Suitable for  Real-time streaming Batch processing 
    

Complexity  Easy to write and debug Difficult to write and debug 
      

Processing  In-memory   Local disk 

Location      
      

Developed using Scala   Java 

the laguage      
    

Supported  Python,Scala,Java,R,SQL Java,Python,Ruby,Perl,C,C++ 

Languages      
     

Cost  High  because of  huge Less cost 

  amount of RAM   
      

Security  Evolving   High compared to Spark 
     

Coding  Less no.of lines  More no.of lines 
    

SQL  Through Spark SQL Through HiveQL 
      

 
Q) Explain various statistical operation on RDDs. 
 

Spark provides several descriptive statistics operations on RDDs containing 
numeric data. 
 

count() Number of elements in the RDD 
mean() Average of the elementsin  RDD 



sum() Total sum of all elements in  RDD 
max() Maximum valuein  RDD 

min() Minimum valuein  RDD 
variance() Variance of the elements 

sampleVariance() Variance of the elements, computed for a sample 
stdev() Standard deviation 
sampleStdev() sample standard deviation 
 

Eg.1. 
 

>>> nums = sc.parallelize([1, 2, 3, 4]) 

>>> nums.count() 
4 

>>> nums.mean() 

2.5 
 
 

Eg. 2. Removing outliers in Python 
 

>>> distanceNumerics = sc.parallelize([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 

1000]) 
>>> stats = distanceNumerics.stats() 

>>> stddev = stats.stdev() 
>>> mean = stats.mean() 
>>> reasonableDistances = distanceNumerics.filter( lambda x: 

math.fabs(x - mean) < 3 * stddev) 
>>> print reasonableDistances.collect() 

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
 
 

Q) Write a program for wordcount in spark. 
 

Wordcount.py 
 

importpyspark 
 

import random 
 

if not 'sc' in globals(): 
sc = pyspark.SparkContext() 

text_file = sc.textFile("/home/hadoop/Desktop/dept.txt")  
counts = text_file.flatMap(lambda line: line.split(","))  

\ .map(lambda word: (word, 1)) .reduceByKey(lambda a, b: a + b) 
counts.saveAsTextFile("/home/hadoop/Desktop/word") 

 
 



Q) What is the need of Spark SQL? Explain how to connect to Spark SQL. 
 
Spark SQL is easier and efficient to load and query structured data. It provides 3 
capabilities: 

 
1. It can load data from a variety of structured sources (e.g., JSON, Hive) 

2. It lets you query the data using SQL, both inside a Spark program and from 
external tools that connect to Spark SQL through standard database 

connectors (JDBC/ODBC), such as business intelligence tools like Tableau. 
3. When used within a Spark program, Spark SQL provides rich integration 

between SQL and regular Python/Java/Scala code, including the ability to join 
RDDs and SQL tables, expose custom functions in SQL 

 
Spark SQL provides a special type of RDD called SchemaRDD. A SchemaRDD is 
an RDD of Row objects, each representing a record. A SchemaRDD also knows 

the schema (i.e., data fields) of its rows. 
 

SchemaRDDs can be created from external data sources, from the results of 
queries, or from regular RDDs. 

 
 

Spark SQL can be built with or without Apache Hive, the Hadoop SQL engine. 

SparkSQL with Hive support allows us to access Hive tables, UDFs (user-
defined functions). 

 
When programming against Spark SQL we have two entry points depending on 
whether we need Hive support. The recommended entry point is the 

HiveContext to provide access to HiveQL and other Hive-dependent 
functionality. The more basic SQLContext provides a subset of the Spark SQL 

support that does not depend on Hive.  
 



HiveQL is the recommended query language for working with Spark SQL. Many 
resources have been written on HiveQL. 

 
To connect Spark SQL to an existing Hive installation, you must copy your 

hive-site.xml file to Spark’s configuration directory ($SPARK_HOME/conf). 

 

 
Q) Explain how to use Spark SQL in applications with an example. 
 

We can use Spark SQL in our programs using Scala or Python or Java or R. 
1. First we need to import HiveContext and SQLContext in 

our program. Scala users no need to import HiveContext 
2. Create SQLContext 
3. Read the input file 

4. Register the input schema RDD as any temporary table 
5. Write necessary SQL Queries and display the results 

 
Code in Scala: 
 

import org.apache.spark.sql.hive.HiveContext 
import org.apache.spark.sql.SQLContext 
//sc is not required to import or create in scala 

val hiveCtx = new HiveContext(sc) // Constructing a SQL context 
in Scala 

val input = hiveCtx.jsonFile(―iris.json‖) 
// Register the input schema RDD as temporary table iris 
input.registerTempTable("iris")  

// Select records based on petalLength 
val topRows = hiveCtx.sql("select petalLength,petalWidth from iris order by 

petalLength limit 5") 
topRows.show() 
 

 
 
 
 

 
 



Q) Explain about SchemaRDD and their data types. 
 

SchemaRDDs are similar to tables in a traditional database. Under the hood, a 
SchemaRDD is an RDD composed of Row objects with additional schema 

information of the types in each column. 
Both loading data and executing queries return SchemaRDDs. 
SchemaRDDs are also regular RDDs, so you can operate on them using 

existing RDD transformations like map() and filter(). 
 
Types stored by SchemaRDD: 

 
TINYINT  '1 byte signed integer',   -128 to 127 

SMALLINT  '2 byte signed integer',   -32, 768 to 32, 767 
INT   '4 byte signed integer',   –2,147,483,648 to  
2,147,483,647 

BIGINT  '8 byte signed integer',   –
9,223,372,036,854,775,808 to      

9,223,372,036,854,775,807 
FLOAT   'Single precision floating point', 
DOUBLE   'Double precision floating point', 

DECIMAL  'Precise decimal type based on Java BigDecimal Object', 
TIMESTAMP  'YYYY-MM-DD HH:MM:SS.fffffffff" (9 decimal place 
precision)', 

BOOLEAN  'TRUE or FALSE boolean data type', 
STRING   'Character String data type', 

BINARY   'Data Type for Storing arbitrary 
 
b. Complex Data Types in Hive 

In this category of Hive data types following data types are come- 
 Array 
 MAP 

 STRUCT 
 UNION 

ARRAY<TINYINT> 'A collection of fields all of the same data type indexed BY 
an integer' 
 

MAP<STRING,INT> 'A Collection of Key,Value Pairs where the Key is a 
Primitive Type and the Value can be anything. The chosen data types for the 

keys and values must remain the same per map' 
 
STRUCT<first : SMALLINT, second : FLOAT, third : STRING> 

'A nested complex data structure' 
 
UNIONTYPE<INT,FLOAT,STRING> 

'A Complex Data Type that can hold One of its Possible Data Types at Once‘ 
 



Q) What is caching in Spark SQL. 
 

Caching in Spark SQL works a bit differently. Since we know the types of each 
column, Spark is able to store the data more efficiently. 

 
To make sure that we cache using the memory efficient representation, rather 
than the full objects, we should use the special 

hiveCtx.cacheTable("tableName") method. 
 
You can also cache tables using HiveQL/SQL statements. To cache or uncache 

a table simply run CACHE TABLE tableName or UNCACHE TABLE tableName. 
This is most commonly used with command-line clients to the JDBC server. 

 
 
Q) How to connect with JDBC/ODBC server in Spark SQL? Explain how to 

work with it. 
 

Spark SQL also provides JDBC connectivity, which is useful for connecting 
business intelligence (BI) tools to a Spark cluster and for sharing a cluster 
across multiple users. 

 
The JDBC server runs as a standalone Spark driver program that can be 
shared by multiple clients. Any client can cache tables in memory, query them, 

and so on, and the cluster resources and cached data will be shared among all 
of them. 

 
Spark SQL‘s JDBC server corresponds to the HiveServer2 in Hive. It is also 
known as the ―Thrift server‖ since it uses the Thrift communication protocol. 

JDBC server requires Spark be built with Hive support. 
 
The server can be launched with sbin/start-thriftserver.sh in Spark directory. 

This script takes many of the same options as spark-submit. By default it 
listens on localhost:10000, but we can change these with either environment 

variables. 
 
Launching the JDBC server: 

./sbin/start-thriftserver.sh --master sparkMaster 
 
Connecting to the JDBC server with Beeline: 

./bin/beeline -u jdbc:hive2://localhost:10000 
 

Many external tools can also connect to Spark SQL via its ODBC driver. The 
Spark SQL ODBC driver is produced by Simba and can be downloaded from 
various Spark vendors (e.g., Databricks Cloud, Datastax, and MapR). It is 

commonly used by business intelligence (BI) tools such as Microstrategy or 
Tableau. 



 
Working with Beeline 

 
Within the Beeline client, you can use standard HiveQL commands to 

create, list, and query tables. 
 
Eg. 

spark.sql(―create table t1(id int, name string)‖) 
spark.sql(―insert into t1 values(1,‘chp‘)‖) 
spark.sql(―insert into t1 values(2,‘vr‘)‖) 

val df = spark.sql(―select * from t1‖) 
df.show() 

 
 
Q) Illustrate User-Defined Functions in Spark SQL. 

 
User-defined functions, or UDFs, allow you to register custom functions in 

Python, Java, and Scala to call within SQL. 
 
In Scala and Python, we can use the native function and lambda syntax of the 

language, and in Java we need only extend the appropriate UDF class. 
 
Eg. 

 
In Python: 

hiveCtx. udf.register ("strLenPython", lambda x: len(x), IntegerType()) 
lengthSchemaRDD = hiveCtx.sql("SELECT strLenScala('species') FROM iris 
where species = 'setosa'") 

 
In Scala: 
scala> hiveCtx.udf.register ("strLenScala", (_: String).length) 

scala> val speciesLength = hiveCtx.sql("SELECT strLenScala(iris.species) 
FROM iris where species = 'setosa' limit 1") 

 

 
 
 

 
 
 



Q) Give Spark SQL Performance tuning parameters. 
 

Spark SQL is for more than just users who are familiar with SQL. Spark SQL 
makes it very easy to perform conditional aggregate operations, like counting 

the sum of multiple columns. 
 
Eg. 

scala> val res = hiveCtx.sql("SELECT SUM(petalLength), SUM(sepalLength), 
species FROM iris GROUP BY species") 
scala> res.show() 

 

 
 
When caching data, Spark SQL uses an in-memory columnar storage. This not 
only takes up less space when cached, but if our subsequent queries depend 

only on subsets of the data, Spark SQL minimizes the data read. 
 
Predicate push-down allows Spark SQL to move some parts of our query 

―down‖ to the engine we are querying. If we wanted to read only certain records 
in Spark, the standard way to handle this would be to read in the entire 

dataset and then execute a filter on it. 
 
In Spark SQL, if the underlying data store supports retrieving only subsets of 

the key range, or another restriction, Spark SQL is able to push the restrictions 
in our query down to the data store, resulting in potentially much less data 

being read. 
 



 
 
Enabling codegen in scala 

conf.set("spark.sql.codegen", "true") 
 
Beeline command for enabling codegen 
beeline> set spark.sql.codegen=true; 
SET spark.sql.codegen=true 
spark.sql.codegen=true 

Time taken: 1.196 seconds 
-------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------- 

HIVE 
 

Q) Explain different data types in Hive. 

 

Hive Data types are used for specifying the column/field type in Hive tables. 

Mainly Hive Data Types are classified into 5 major categories, let’s discuss them one by one: 

a. Primitive Data Types in Hive 

Primitive Data Types also divide into 3 types which are as follows: 

 Numeric Data Type 

 Date/Time Data Type 

 String Data Type 

TINYINT  '1 byte signed integer',   -128 to 127 

SMALLINT  '2 byte signed integer',   -32, 768 to 32, 767 

INT   '4 byte signed integer',   –2,147,483,648 to 2,147,483,647 

BIGINT  '8 byte signed integer',   –9,223,372,036,854,775,808 to      

9,223,372,036,854,775,807 

FLOAT   'Single precision floating point', 



DOUBLE   'Double precision floating point', 

DECIMAL  'Precise decimal type based on Java BigDecimal Object', 

TIMESTAMP  'YYYY-MM-DD HH:MM:SS.fffffffff" (9 decimal place 

precision)', 

BOOLEAN  'TRUE or FALSE boolean data type', 

STRING   'Character String data type', 

BINARY   'Data Type for Storing arbitrary 

b. Complex Data Types in Hive 

In this category of Hive data types following data types are come- 

 Array 

 MAP 

 STRUCT 

 UNION 

ARRAY<TINYINT> 'A collection of fields all of the same data type indexed BY an integer', 

MAP<STRING,INT> 'A Collection of Key,Value Pairs where the Key is a Primitive Type and 

the Value can be anything. The chosen data types for the keys and values must remain the same 

per map', 

 

STRUCT<first : SMALLINT, second : FLOAT, third : STRING> 

'A nested complex data structure', 

UNIONTYPE<INT,FLOAT,STRING> 

'A Complex Data Type that can hold One of its Possible Data Types at Once’ 

eg. 

t1.txt 

1001,cse^1,1|2|3,A|50000,3,true 

1002,cse^2,1|2,B|40000,good,true 

 

Creating a table t1: 

create table t1(id int,class map<string,int>,sections array<int>,hostel 

struct<grade:string,fee:double>,rating uniontype<int,string>,exist boolean) 

row format delimited 

fields terminated by ',' 

collection items terminated by '|' 

map keys terminated by '^' 

lines terminated by '\n' 

stored as textfile; 

 

Q) What is Hive Query Language(HQL)? Explain various DDL and DML 
statements in Hive 
Hive query language provides basic SQL like operations. 

Basic tasks of HQL are: 
1. Create and Manage tables and partitions 

2. Support various relational, arithmentic and logic operations 
3. Evaluate functions 
4. Down load the contents of a table to a local directory or result of queries 

to HDFS directory.  



HIVE DDL Statements:  
These statements are used to build and modify the tables and other 

objects in the database. 
1. Create/Drop/Alter Database 

2.  Create/Drop/truncate Table 
3. Alter Table/partition/column 
4. Create/Drop/Alter view 

5. Create/Drop/Alter index 
6. Show  
7. Describe 

 
HIVE DML Statements:  

These statements are used to retrive, store, modify, delete and update data in 
database. The DML commands are as follows: 

1. Loading files into table. 

2. Inserting data into Hive tables from queries. 
 

1. Creating and Managing Databases and Tables 
faculty.txt  
1,chp,10000  

2,pnr,20000  
3,kry,30000  

dept.txt  
2@cse  

3@mca  
4@cse 

 
hive> create database chp;  

OK  

Time taken: 0.116 seconds  
NOTE: TO CREATE DATABASE WITH COMMENTS AND DATABASE 

PROPERTIES 
create database if not exists chp comment ‗employee details‘ with 
dbproperties(‗creator‘=‘praneeth‘); 

 
hive> show databases;  
OK  

chp  
default  

 
hive> use chp;  
OK  

Time taken: 0.018 seconds 
hive>  describe database chp; 

NOTE: SHOWS ONLY DB NAME, COMMENT AND DB DIRECTORY 
 
hive> describe database extended chp; 

NOTE: SHOWS DB PROPERTIES ALSO. 
 
 



 
2.  Create tables emp and dept and load data from text files on hdfs.  

hdfs dfs -mkdir /chp/data  
hdfs dfs -put   /home/pvp/Desktop/hive_data/*.txt     /chp/data  

 
hive> create table emp(id int,name string,sal double) row format delimited 
fields terminated by ',';  

OK  
Time taken: 8.331 seconds  
hive> show tables;  

OK  
emp  

 
hive> create table dept(eid int,dept string) row format delimited fields 
terminated by '@';  

OK  
Time taken: 0.088 seconds 

3. Loading data into the tables 
hive> load data inpath '/chp/data/faculty.txt' into table emp;  
hive> load data inpath '/chp/data/dept.txt' into table dept; 

 
4. Retreiving data from the tables. 
hive> select * from emp;  

OK  
1 chp 10000.0  

2 pnr 20000.0  
3 kry 30000.0  
Time taken: 0.379 seconds, Fetched: 3 row(s)  

hive> select * from dept;  
OK  
2 cse  

3 mca  
4 cse  

Time taken: 0.133 seconds, Fetched: 4 row(s) 
 

Q) Briefly explain joins in Hive. 

 
JOIN is a clause that is used for combining specific fields from two tables by 

using values common to each one. It is used to combine records from two or 
more tables in the database. It is more or less similar to SQL JOIN.  
 

Inner join: The HiveQL INNER JOIN returns all the rows which are common in 
both the tables.  
 

 
 



hive> select * from emp join dept on (emp.id=dept.eid);  
2 pnr 20000.0 2 cse  

3 kry 30000.0 3 mca 
 

Left outer join: A LEFT JOIN returns all the values from the left table, plus 
the matched values from the right table, or NULL in case of no matching JOIN 
predicate.  

 
hive> select * from emp left outer join dept on (emp.id=dept.eid);  
1 chp 10000.0 NULL NULL  

2 pnr 20000.0 2 cse  
3 kry 30000.0 3 mca  

 
Right Outer Join: The HiveQL RIGHT OUTER JOIN returns all the rows from 
the right table, even if there are no matches in the left table. If the ON clause 

matches 0 (zero) records in the left table, the JOIN still returns a row in the 
result, but with NULL in each column from the left table.  

 
hive> select * from emp right outer join dept on (emp.id=dept.eid);  
2 pnr 20000.0 2 cse  

3 kry 30000.0 3 mca  
NULL NULL NULL 4 cse  
 

Full outer join: The HiveQL FULL OUTER JOIN combines the records of both 
the left and the right outer tables that fulfil the JOIN condition. The joined 

table contains either all the records from both the tables, or fills in NULL 
values for missing matches on either side.  
 

hive> select * from emp full outer join dept on (emp.id=dept.eid);  
1 chp 10000.0 NULL NULL  
2 pnr 20000.0 2 cse  

3 kry 30000.0 3 mca  
NULL NULL NULL 4 cse 

 
NOTE: Inner Join In Spark SQL using scala: 
 

val i = spark.sql("select * from emp join dept on (emp.id=dept.eid)") 
val.show() //display the result of the join. 

 

 



Q) Briefly explain about Views in Hive.  
 

A view is purely a logical construct (an alias for a query) with no physical data 
behind it.  

So altering a view only involves changes to metadata in the metastore 
database, not any data files in HDFS.  
When a query becomes long or complicated, a view may be used to hide the 

complexity by dividing the query into smaller, more manageable pieces; similar 
to writing a function in a programming language or the concept of layered 
design in software.  

 
1.  Create a view from emp table with the fields id and name.  

hive> create view emp_view as select id,name from emp;  
hive> select * from emp_view;  
1 chp  

2 pnr  
3 kry  

 
2.  Find no.of employees using above view.  

hive> select count(*) from emp_view;  

3 
3.  Drop view.  

hive> drop view emp_view; 

 
Q) Explain about various functions in Hive.  

string functions:  
1.  Display employee names in uppercase  

hive> select upper(name) from emp;  

CHP  
PNR  
KRY  

2.  Display employee names from 2nd character  
hive> select substr(name,2) from emp;  

hp  
nr  
ry  

 
3.  Concatenate emp id and name  

hive> select concat(id,name) from emp;  
1chp  
2pnr  

3kry  
 
Math Functions:  

1.  Find the salaries of the employees by applying ceil function.  
hive> select ceil(sal) from emp;  



10000  
20000  

30000  
2.  Find the square root of the emp salaries.  

hive> select sqrt(sal) from emp;  
100.0  
141.4213562373095  

173.20508075688772  
 
 

 
3.  Find the length of the emp names.  

hive> select name,length(name) from emp;  
chp 3  
pnr 3  

kry 3  
 

Aggregate functions:  
 

1.  Find no.of employees in the table emp.  

hive> select count(*) from emp;  
3  

2.  Find the salary of all the employees.  

hive> select sum(sal) from emp;  
60000.0  

3.  Find the average salary of the employees.  
hive> select avg(sal) from emp;  
20000.0  

4.  Find the minimum salary of all the employees.  
hive> select min(sal) from emp;  
10000.0  

5.  Find the maximum salary of all the employees.  
hive> select max(sal) from emp;  

30000.0  
 
Queries:  

1.  Display different department in dept  
hive> select distinct(dept) from dept;  

cse  
mca  

2.  Find the employees who earns 10000  

hive> select name from emp where sal=10000;  
chp  

3.  Find the employees who earns greater than 20000  

hive> select name from emp where sal>=20000;  
pnr  



kry  
4.  Find the employee id whose name is either chp or kry  

hive> select id from emp where name='chp' or name='kry';  
1  

3  
5.  Find the employee name whose dept is either cse or mca.  

select emp.name from emp join dept on(emp.id=dept.eid) where dept.dept='cse' 

or dept='mca';  
pnr  
kry  

(or)  
select emp.name from emp left outer join dept on(emp.id=dept.eid) where 

dept.dept='cse' or dept.dept='mca'; 
pnr  
kry  

6.  Find first 2 records in dept  
hive> select * from dept limit 2;  

OK  
2 cse  
3 mca  

 
7.  Find the no.of employees in each department.  

hive> select dept,count(*) from dept group by dept;  

cse 2  
mca 1  

 
8.  Find the no.of employees in dept cse.  

hive> select dept,count(*) from dept group by dept having dept='cse';  

cse 2 
 

9.   Find the name of the employee who is earning minimum salary.  

hive> select name,sal from emp order by sal limit 1;  
chp 10000.0  

 
10.  Find the name of the employee who is earning maximum 

salary.  

hive> select name,sal from emp order by sal desc limit 1;  
kry 30000.0 

 
 
 

------------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------ 
 

 
 



Q) Explain about Index in Hive.  
 

An Index acts as a reference to the records. Instead of searching all the 
records, we can refer to the index to search for a particular record.  

 
In a Hive table, there are many numbers of rows and columns. If we want to 
perform queries only on some columns without indexing, it will take large 

amount of time because queries will be executed on all the columns present in 
the table.  
 

Indexes are maintained in a separate table in Hive so that it won‘t affect the 
data inside the table, which contains the data.  

 
Indexes are advised to build on the columns on which you frequently perform 
operations.  

 
Building more number of indexes also degrade the performance of your query.  

Types of Indexes in Hive  
Compact Indexing  
Bitmap Indexing  

 
Differences between Compact and Bitmap Indexing  
Compact indexing stores the pair of indexed column‘s value and its blockid.  

Bitmap indexing stores the combination of indexed column value and list of 
rows as a bitmap. 

  
Creating compact index:  
Syntax:  

hive> create index index_name on table table_name(columns,...) as 
'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' with deferred 
rebuild;  

 
Here, in the place of index_name we can give any name of our choice, which 

will be the table‘s INDEX NAME.  
•In the ON TABLE line, we can give the table_name for which we are creating 
the index and the names of the columns in brackets for which the indexes are 

to be created. We should specify the columns which are available only in the 
table.  

•The org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler‘ line 
specifies that a built in CompactIndexHandler will act on the created index, 
which means we are creating a compact index for the table.  

•The WITH DEFERRED REBUILD statement should be present in the created 
index because we need to alter the index in later stages using this statement.  
 

 
 



Eg.  
hive>create index emp_index on table emp(name,sal) as 

'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' with deferred 
rebuild;  

 
creating bitmap index:  
Syntax:  

create index index_name on table table_name(columns,...) as 'bitmap' with 
deferred rebuild;  
eg.  

hive> create index dept_index on table dept(eid) as 'bitmap' with deferred 
rebuild; 

 
Q) Find different indices on table emp and dept  
hive> show formatted index on emp;  

 
idx_name tab_name col_names idx_tab_name idx_type  

emp_index emp name, sal default__emp_emp_index__ compact  
 
hive>show formatted index on dept;  

 
idx_name tab_name col_names idx_tab_name idx_type  
dept_index dept eid default__dept_dept_index__ bitmap  

 
1) Update index emp_index  

hive> alter index emp_index on emp rebuild;  
2) Drop index emp_index  
hive>drop index if exists emp_index on emp;  

 
Q) Explain Partitioning in Hive.  
 

In Hive, the query reads the entire dataset even though a where clause filter is 
specified on a particular column. This becomes a bottlenect in most of the  

MapReduce jobs as it involves huge degree of I/O.  
 
So it is necessary to reduce I/O required by the MapReduce job to imporve the 

performance of the query. A very common method to reduce I/O is data 
partioning. 

 
Partitions split the larger dataset into more meaningful chunks. Hive provides 
two kinds of partions. 

 
Static partition:  Static partitions comprise columns whose values are known 
at compile time. 

 
 



Eg.  
1) Create a partition table.  

hive> create table std_partition(sid int) partitioned by (branch string) row 
format delimited fields terminated by ',' stored as textfile;  

 
std1.txt  
1001  

1002  
 
2) Load data into std_partition from st1.txt and partitioned column 

branch as cse.  
hive> load data local inpath 'home/pvp/Desktop/hive_data/std1.txt' into table 

std_partition partition(branch='cse');  
hive> select * from std_partition;  
1001 cse  

1002 cse  
std2.txt  

2001  
2002  
 

Q) Loading data into std_partition from std2.txt and partitioned column 
branch as mca.  
 

hive> load data local inpath '/home/chp/Desktop/hive_data/std2.txt' into 
table std_partition partition(branch='mca');  

hive> select * from std_partition;  
1001 cse  
1002 cse  

2001 mca  
2002 mca  
 

Dynamic partitioning: Dynamic partition have columns whose values are 
known only at Execution time. 

By default the dynamic partitioning will be off. We can enable it by using the 
following commands in hive.  
hive> set hive.exec.dynamic.partition=true;  

hive> set hive.exec.dynamic.partition.mode=nonstrict;  
hive> set hive.exec.max.dynamic.partitions.pernode=450;  

 
 
 

 
 
 

 
 



1) Create a partition table.  
hive> create table dept_partition(id int) partitioned by (branch string);  

 
2) Describe dept_partition.  

hive> describe formatted dept_partition;  
# col_name data_type  
id int None  

# Partition Information  
# col_name data_type  
branch string None  

 
3) Load data into dept_partition from dept table.  

hive>insert into table dept_partition partition(branch) select * from dept;  
hive> select * from dept_partition;  
OK  

2 cse  
4 cse  

3 mca  
 
4) Drop partitioned table dept_partition.  

hive> alter table dept_partition drop partition(branch='cse');  
Dropping the partition branch=cse  
OK  

Time taken: 1.737 seconds  
hive> select * from dept_partition;  

OK  
3 mca 


